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Significance of Updating Schemes in Computational
Models: Dynamics of Neutral Networks

Larry S. Liebovitch1,3 and Michal Zochowski1,2

There are numerous examples in physics of complex systems, such as
neural networks,(1) biomolecules(2) and spin glasses,(3) that have many
degrees of freedom with many interactions that impose conflicting con-
straints. Computer simulations are an important tool in understanding the
physics of these systems. They are used to determine the stable conforma-
tions that these systems reach in long times as well as the dynamics of
the approach to these states. The computational form of the simulation
must correctly model the physics if it is to lead to correct results. This
is especially true for understanding the dynamical properties of these
systems.
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A Hopfield neural network was constructed with relevance to protein dynamics.
The dynamics of this network was analyzed by determining the distribution of
first passage times between memories and its dependence on temperature. The
distribution depended on the updating scheme. This illustrates the importance
of choosing an updating scheme that leads to physically meaningful results in
computational models of dynamic processes, such as in neural networks or
molecular dynamics.
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We used a simple, parallel distributed, neural network to study the
properties of such computational models. We have been interested in
neural networks as a way of modeling how ion channel proteins change
their conformational shape from ones that are open to ones that are closed
to the passage of ions, such as sodium and potassium, through the cell
membrane. This problem involves understanding the dynamics of the
protein switching from one formed conformational shape to another rather
than the protein folding problem which studies how an unformed structure
folds into its stable shape. Proteins have many of the characteristics of
neural networks, such as parallel distributed structure, frustration, and
ultrametricity.(4-7) It may therefore be possible to use neural networks to
compute the dynamics of these proteins.(5) The spatial shape of the protein
can be encoded in the values of the nodes of the network and the forces or
energies in the connection strengths. As the neural network is updated the
changing values of the nodes may be able to compute the changing shape
of the corresponding protein. We ultimately want to assess if the dynamics
computed by such a network matches that of its corresponding protein.
However, we must first understand how the dynamics computed by the
network, or any computational simulation, depends on how the simulation
is carried out, which is the goal of the studies presented here.

There has been much study of static properties of neural networks,
such as the nature of the energy surface and whether a given set of initial
conditions converges to a desired configuration in the long term. However,
there has been little study about the dynamics of how such networks
reaches those memories. In particular, does the dynamics of the network
depend on the scheme used to update the computation?

In this article we report the results of our studies of a Hopfield type
neural network(8) To assess the dynamical properties we determined the
distribution of first passage times from one state to another. We found that
the updating scheme can have a crucial affect on these distributions. These
results have important implications for the dynamics computed by neural
networks and by other simulations as well, such as molecular dynamics. It
raises the question as to whether some dynamical properties computed by
such simulations are artifacts of the updating scheme used.

The PDF distribution for one stored memory was derived in ref. 5.
However, we could not solve for PDF analytically for two or more stored
memories. Therefore, our results presented here are based on numerical
simulations.

The network we studied had N= 100 nodes which were all connected
to each other. The values of the nodes £i = +1. There were two memories
(u = 1, 2) analogous to the open and closed states of the ion channel
protein that consisted of the set of N nodes £i which were given random
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values so that the two memories are orthogonal. The connection matrix J
was constructed by using the Hebbian algorithm:

The state of the network corresponding to the open or closed state of the
ion channel was defined by the largest overlap:

where S i ( t ) are the values of the nodes. When the state with the largest
overlap changed from 1 -> 2 or from 2 -> 1, the network passed through the
boundary between the two states. The first passage times are the number
of consecutive time steps spent in each state. We used the distribution of
first passage times to characterize the dynamics of the network since this
corresponds to the distribution of the open and closed times of the ion
channel protein that are measured by patch clamp experiments(4) We
determined these distributions as a function temperature. The temperature
was parametrized by B= 1/kT, where T is temperature in °K, and k is the
Boltzmann constant.

There are two major ways that the values of the nodes of the network
can be updated:

1. Synchronous updating: all the elements are updated in every time
step.

2. Asynchronous updating: one randomly chosen element is updated
at every time step.

In either method, at each step, the probability that a given neuron assumes
a new state is given by:

where:

These different updating schemes resulted in different first passage time
distributions as shown in Figs. 1, 2. For a synchronous updating, at high
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Fig. 1. Synchronous updating: Distribution of first passage times between the two memories
in the neural network. High temperature (B = 0.1), medium temperature (B= 0.6), and low
temperature (B=1,3) . As the temperature decreases the distribution changes from a single
exponential to a power law with an exponential tail. This is consistent with the dynamics
expected of a neural network.

temperature, the distribution is a single exponential. At lower temperature,
the distribution changes to a power law with a single exponential tail. For
synchronous updating, at both high and low temperature, the distribution
is always a power law.

These results can be understood in the following way. The evolution
of the network in time can be represented as the motion of a point on an
Af-dimensional hypercube whose vertices are given by the values S i - ( t ) of
nodes. The motion of this point on N-dimensional hypercube has a random
component determined by the temperature and may have an additional
component at each location driven by the connection strengths and the
values of the nodes. The vertices of that hypercube are split into two dis-
tinct regions which are representing open and closed conformational states
of the protein. Thus not all vertices of the hypercube lie on the boundary
between those two regions.

The FPT distribution for such a random walk in a finite region of an
M-dimensional space (in our case M = N/2 for both regions) is a power law
at short times and a single exponential at longer times.(9,10) The transition
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Fig. 2. Asynchronous updating: Distribution of first passage times between the two
memories in the neural network computed by asynchronous updating. High temperature
(B = 0.1), medium temperature (B = 0.6), and low temperature (B= 1.3). The distribution is a
power law at all temperatures. This form may represent an artifact of the asynchronous updating.

between these two regimes occurs at the time expected for the random
walker to reach the boundary of the region.

For synchronous updating, at high temperature, the heat energy is
much above the energy surface of the network. The configuration of the
network performs an unrestricted random walk at high enough energy to
reach the edge of the configurational space in short enough time to make
the distribution of first passage times a single exponential. At lower tem-
perature, the random walk is slower, it takes longer to reach the edge of
the configurational space, and thus the distribution of first passage times
consists of a power law with an exponential tail.

The behavior of the synchronous updating can also be thought of in
another way. At high temperature there is enough energy so that the
network freely wanders over the energy surface producing a single
exponential distribution. As the temperature is lowered there is a spin-glass
phase where the network encounters many local minima and wanders
between them. The heat energy is of the same order as the energy of the
network. This produces constraints on the walk among these minima which
leads to the power law component in the distribution of first passage times.
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As the temperature is lowered further the network reaches one stable con-
figuration, corresponding to one memory, and there is not enough heat for
it to switch out of that memory. These results are consistent with the
derived physical properties of the T-a. (temperature-storage capacity) phase
diagram [1, p. 305]. As the temperature is lowered (in the limit of few
memories) the network passes from an ergodic phase where it passes
through the entire configurational space, to a spin-glass phase where it
passes through many local minima, to a stable state where the network
converges to the minimum of a true memory. We also found that the rate
constant of the single exponential at high temperature had the expected
physical characteristic of an Arrhenius (e- cons tan t /kT) temperature
dependence. It is worth mentioning that the spin-glass phase is a well
defined finite region in these simulations because the network is of finite
size (N= 100). For a fixed number of memories, the size of this spin-glass
region scales with the number of nodes. For a network with two stored
memories, in the limit as N —> oo there is no spin-glass phase because a —> 0.

For asynchronous updating, at both high and low temperature, the
distribution of first passage times is the same power law. Since only one
node is updated at a time, the network can only pass through a limited
number of points adjacent in the configurational space. Thus, the random

Fig. 3. As the updating was varied from asynchronous (r = 0.01) to synchronous (r=1) the
distribution of first passage times varied from a power law, to a power law with an exponen-
tial tail, to a single exponential. These simulations were performed for B = 1.
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walk is constrained, it takes much longer to reach the edge of the con-
figurational space, and thus the distribution of first passage times is
dominated by the power law component. The restrictions introduced in the
motion in the configurational space cause correlations in the dynamics that
are due to the updating scheme and are not physically meaningful. In
essence, updating isolated nodes generates local, physically distinct regions
and the complexity introduced by such separate regions leads to a power
law distribution.

We also devised updating schemes that are intermediate between syn-
chronous and asynchronous updating. At every time step a fixed propor-
tion r of randomly chosen elements are updated. As shown in Fig. 3, when
the updating was varied from asynchronous (r=1/N) to synchronous
(r= 1), the distribution of first passage times varied continuously from a
power law, to a power law with an exponential tail, to a single exponential.

As summarized in Table I, synchronous and asynchronous updating
schemes result in different dynamics of the computational model. The
dynamics computed by synchronous updating is consistent with other
physical properties of neural networks. The dynamics computed by
asynchronous updating appears to produce nonphysical results because the
updating generates physically distinct regions that evolve separately and
then interact, instead of the whole system evolving globally and interacting
in parallel. This problem with asynchronous updating has implications for
all complex computational models that use such updating schemes. It raises
the question as to which dynamical results of such calculations are due to
the physical properties of the model and which are artifacts of the com-
putational method. In particular, it raises the concern that some of the
dynamical properties computed in molecular dynamics simulations by
asynchronous updating may arise from the nature of the updating scheme
and may not be physically meaningful.(2)
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Table I. Summary of the Obtained Results: Changes of the FPT Distributions
Dependent on the Updating Scheme

Synchronous Updating
Asynchronous Updating

High Temperature Limit

single exponential

power law

Low Temperature Limit

power law with single exponential tail
power law
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